Cep120 and TACCs Control Interkinetic Nuclear Migration and the Neural Progenitor Pool

نویسندگان

  • Zhigang Xie
  • Lily Y. Moy
  • Kamon Sanada
  • Ying Zhou
  • Joshua J. Buchman
  • Li-Huei Tsai
چکیده

Centrosome- and microtubule-associated proteins have been shown to be important for maintaining the neural progenitor pool during neocortical development by regulating the mitotic spindle. It remains unclear whether these proteins may control neurogenesis by regulating other microtubule-dependent processes such as nuclear migration. Here, we identify Cep120, a centrosomal protein preferentially expressed in neural progenitors during neocortical development. We demonstrate that silencing Cep120 in the developing neocortex impairs both interkinetic nuclear migration (INM), a characteristic pattern of nuclear movement in neural progenitors, and neural progenitor self-renewal. Furthermore, we show that Cep120 interacts with transforming acidic coiled-coil proteins (TACCs) and that silencing TACCs also causes defects in INM and neural progenitor self-renewal. Our data suggest a critical role for Cep120 and TACCs in both INM and neurogenesis. We propose that sustaining INM may be a mechanism by which microtubule-regulating proteins maintain the neural progenitor pool during neocortical development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Ups and Downs of Neural Progenitors: Cep120 and TACCs Control Interkinetic Nuclear Migration

The nuclei of dividing neural progenitors undergo a cell-cycle-dependent change in position along the apico-basal axis known as interkinetic nuclear migration (INM). The functional relationship between INM and the mode of division of neural progenitors remains elusive, in part because its regulation at the molecular level is poorly understood. In this issue of Neuron, Xie et al. identify two ce...

متن کامل

Neural Progenitor Nuclei IN Motion

Interkinetic nuclear migration (INM), the movement of neuroepithelial and radial glial cell nuclei along the apical-basal axis in concert with the cell cycle, underlies the pseudostratification of the ventricular zone (VZ). Recent studies provide insight into the molecular mechanisms of INM and its effects on neural progenitor cell fate determination. Moreover, INM not only has a key role in in...

متن کامل

Regulation of Neurogenesis by Interkinetic Nuclear Migration through an Apical-Basal Notch Gradient

The different cell types in the central nervous system develop from a common pool of progenitor cells. The nuclei of progenitors move between the apical and basal surfaces of the neuroepithelium in phase with their cell cycle, a process termed interkinetic nuclear migration (INM). In the retina of zebrafish mikre oko (mok) mutants, in which the motor protein Dynactin-1 is disrupted, interkineti...

متن کامل

Apical movement during interkinetic nuclear migration is a two-step process.

Neural progenitor cells in the pseudostratified neuroepithelium in vertebrates undergo interkinetic nuclear migration, which results in mitotic cells localized to the apical surface. Interphase nuclei are distributed throughout the rest of the epithelium. How mitosis is coordinated with nuclear movement is unknown, and the mechanism by which the nucleus migrates apically is controversial. Using...

متن کامل

Putting a Notch in Our Understanding of Nuclear Migration

The nuclei of progenitor cells in developing neural epithelia change their position during the cell cycle through a process called interkinetic nuclear migration. Del Bene et al. (2008) report that defects in the machinery controlling this process lead to altered exposure to Notch signals and systemic effects on neurogenesis in the retina.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2007